The treatment of traumatic dental injuries

Author: Dr Asgeir Sigurðsson, USA

Introduction

When treating dental trauma, the timeliness of care is key to saving the tooth in many cases. It is, therefore, important for all dentists to have an understanding of how to diagnose and treat the most common dental injuries. This is especially critical in the emergency phase of treatment.

Proper management of dental trauma is most often a team effort with general dentists, pediatric dentists or oral surgeons on the front line of the emergency service, and endodontic specialists joining the effort to preserve the tooth with respect to the pulp, pulpal space and root. An informed and coordinated effort from all team members ensures that the patient receives the most efficient and effective care.

Recently, a panel of expert members of the American Association of Endodontists prepared an updated version of Guidelines for the Treatment of Traumatic Dental Injuries. These guidelines were based, in part, on the current recommendations of the International Association of Dental Traumatology (see www.iadtdentaltrauma.org for more information). This article provides an overview of the AAE guidelines; the complete guidelines are available for free download at www.aae.org/clinical-resources/trauma-resources.aspx.

The benefit of adhering to guidelines for treatment of dental trauma was recently shown in a study by Bucher et al. The study found that, compared with cases treated without compliance to guidelines, cases that adhered to guidelines produced more favorable outcomes, including significantly lower complication rates. The study also found that early follow-up visits were essential to ensure prompt treatment of complications when they arose.

Emergency care

Prior to any treatment, one must evaluate the injury thoroughly by careful clinical and radiographic investigation. It is recommended to follow a check list to ensure that all necessary information regarding the patient and the injury is gathered, including:

1. Patient’s name, age, sex, address and contact numbers (include weight for young patients).
2. Central nervous system symptoms exhibited after the injury.
3. Patient’s general health.
4. When, where and how the injury occurred.
5. Treatment the patient received elsewhere.
6. History of previous dental injuries.
7. Disturbances in the bite.
8. Tooth reactions to thermal changes or sensitivity to sweet/sour.
9. If the teeth are sore to touch or during eating.
10. If the patient is experiencing spontaneous pain in the teeth.

Once all of this information is gathered, a diagnosis can be made and appropriate treatment rendered. If the injured individual is not a patient of record, all necessary demographic information should be gathered as soon as the patient arrives and prior to any assessment. In the case of avulsion and the tooth being out of...
its socket, one should immediately place the tooth in a physiological solution of specialized media (such as Hank’s Balanced Salt Solution) or milk, or saline if those are not available. Only after the tooth is secured in solution should one obtain the patient’s information. Once the patient is seated in the dental chair, it is necessary to do a quick central nervous system (CNS) evaluation before proceeding with further assessments.

Often, the dentist is the first health-care provider to see the patient after a head injury (any dental trauma is, by definition, a head injury) and must assess the risk of concussion or hemorrhage. It has been estimated by a meta-analysis that the prevalence of intracranial hemorrhage after a mild head injury is 8 percent, and the onset of symptoms can be delayed for minutes to hours. The most common signs of serious cerebral concussion or hemorrhage are loss of consciousness or post-traumatic amnesia. Nausea/vomiting, fluids from the ear/nose, situational confusion, blurred vision or uneven pupils, and difficulty of speech and/or slurred speech may also indicate serious injury.

Once the patient has been cleared of any CNS issues, the dental trauma should be assessed. The key is to obtain comprehensive information about the injury and, to do so, one must conduct thorough extra-oral and intraoral clinical exams as well as appropriate radiographic evaluations.

The new AAE guidelines recommend taking one occlusal and two periapical radiographs with different lateral angulations for all dental injuries, including crown fractures. If cone-beam computed tomography is available, it should be considered for more serious injuries, such as crown/root, root and alveolar fractures, as well as all luxation injuries.

Additionally, sensibility tests should be conducted on all teeth involved as well as opposing teeth. Cold testing is recommended over electric pulp testing in young individuals. Both testing methods should be considered, however, especially when there is no response to one of the two. The pulp might be non-responsive for several weeks after a traumatic injury, so a pulp test should be done at every follow-up appointment until a normal response is obtained.

Once the diagnosis is confirmed and more serious complications such as CNS and jaw or other facial bone fractures have been ruled out, the emergency phase of the treatment needs to be initiated. The aim of treating dental trauma should be to either maintain or regain pulp vitality in traumatized teeth. This is because dental trauma most frequently occurs in pre-
Follow-Up Procedures for Fractured Permanent Teeth and Alveolar Fractures

<table>
<thead>
<tr>
<th>TIME</th>
<th>Crown Fracture</th>
<th>Crown-Root Fracture</th>
<th>Root Fracture</th>
<th>Alveolar Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncomplicated</td>
<td>Complicated</td>
<td>Uncomplicated</td>
<td>Complicated</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>Splint removal*, clinical and radiographic control</td>
<td>Splint removal and clinical and radiographic controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–8 Weeks</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
</tr>
<tr>
<td>4 Months</td>
<td>Splint removal**, clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
</tr>
<tr>
<td>6 Months</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
</tr>
<tr>
<td>1 Year</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
</tr>
<tr>
<td>Yearly for 5 Years</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
<td>Clinical and radiographic control</td>
</tr>
</tbody>
</table>

*Splint removal in apical third and mid-root fractures; **Splint removal with a root fracture near the cervical area.

Fig. 3d: A periapical radiograph of a root fracture a few hours after the injury. It was established that both fragments were in good approximation of each other. Splinting was done for two weeks.

Fig. 3e: At the nine-month recall, internal root resorption was noted, but no defect in the PDL or adjacent bone, indicating a ‘normal’ healing process.

Fig. 3f: Five-year recall, no endodontic treatment was needed.

teens or young teens in whom the teeth have not yet fully developed, and root development will cease without a vital pulp.

Clinical examples

Dental trauma can be roughly divided into two groups: fractures and luxation injuries. The fractures are then further divided by type: crown, crown-root and root fractures. If the pulp is exposed to the oral environment, it is called a complicated fracture; if not exposed, it is called an uncomplicated fracture.

Crown fractures

The first thing to do in any crown or crown-root fracture is to look for the broken-off tooth fragment. With modern bonding technology it is possible to re-bond the fragment to the tooth, which is esthetically the best solution. Prior to reattaching the tooth fragment, the remaining dental thickness immediately covering the pulp needs to be assessed radiographically and clinically. If there is at least 0.5 mm of the dentin remaining, there is no need to cover it with a protective liner. If it is estimated that the remaining dentin is less than 0.5 mm, it is advisable to cover the deepest part, closest to the pulp, with a cavity liner, and then dimple the fragment accordingly.8, 9 If the tooth fragment was kept dry, it should be rehydrated in distilled water or saline for 30 minutes prior to reattachment. This process will increase its bonding strength10 (Figs. 1a–c).

In a complicated fracture, the goal is to create a bacteria-tight seal to protect the pulp, after ensuring that the pulpal wound is clean and all inflamed tissue removed.11, 12 The two best capping materials available today are calcium hydroxide and mineral trioxide aggregate (MTA),13,14 but newer bioceramic materials are showing promise for this application. It is advisable to create a 1-2 mm reservoir into the pulp with a high-speed diamond bur and copious water cooling, place the capping material, and then either reattach the tooth fragment or restore the crown with a composite resin material (Figs. 2a–c).
Crown-root fractures

One of the more challenging types of fracture to treat is the crown-root fracture because the fracture margin has to be exposed around the tooth/crown to properly restore the tooth.

This can be accomplished by gingivectomy if the fracture line is in the sulcus. In more extreme cases, the tooth will have to be extruded with orthodontic forces or surgically repositioned. In the emergency session, if the pulp is exposed, it needs to be protected in the same fashion as complicated crown fractures. If the pulp is not exposed, all accessible exposed dentin areas should be covered for the patient’s comfort.

Pulpal survival for all these fracture types is generally good; however, endodontic treatment may be indicated later. Therefore, it is of utmost importance that a recall schedule is followed and that the teeth involved in the trauma are tested every time. Tables 1 & 2 outline the recommended recall rates for most common dental injuries. It is not uncommon for there to be no response to vitality tests for up to three months, and a lack of response to vitality tests does not always indicate that root canal treatment is needed—especially in young and immature teeth. Rather, it is advisable to look for at least one other sign of pulpal necrosis, such as vestibule swelling, periapical lesions and/or dramatic color change of the crown. If no signs exist, continue to monitor the patient at regular appointments every three months, for up to one year.

Root fractures

The pulp is affected in all root fractures. However, if the fragments are approximated soon after the fracture, there is a good chance that no endodontic treatment is necessary, just observation. With good approximation, it is likely that the pulp will revascularize across the fracture regardless of the age of the patient (Figs. 3a–f). A recent retrospective study included assessment of splinting type and time of root fracture. The study determined that, if the cervical root fracture is treated with adequate approximation, the pulp is less likely to be affected.

Tables 1 & 2

<table>
<thead>
<tr>
<th>TIME</th>
<th>Concussion/Subluxation</th>
<th>Extrusion</th>
<th>Lateral Luxation</th>
<th>Intrusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Weeks</td>
<td>Splint removal (if applied for subluxation)</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
</tr>
<tr>
<td>4 Weeks</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Splint removal</td>
<td>Splint removal</td>
</tr>
<tr>
<td>6–8 Weeks</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
</tr>
<tr>
<td>6 Months</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
</tr>
<tr>
<td>1 Year</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
<td>Clinical and radiographic examination</td>
</tr>
<tr>
<td>2–5 Years</td>
<td>Yearly up to 5 years</td>
</tr>
</tbody>
</table>

Follow-Up Procedures for Luxated Permanent Teeth

Fig. 4a: In lateral luxation injuries of maxillary teeth, the apex is frequently pushed through the cortical plate facially.

Figs. 4b & c: To reposition the tooth, it has to be released prior to moving the crown forward.
cal portion of the tooth is stable once the two pieces have been approximated, no splint or a flexible splint for two weeks produces the best treatment outcome.2, 18 Longer splinting time is recommended only when the fracture is close to the cervical area.

Luxation injuries

All luxation injuries will cause some damage to the periodontal ligament and, in some cases, the pulp as well. The immediate treatment is to limit further damage to the PDL and allow for the best possible healing. As with all dental injuries, follow-up is essential. Late complications, such as internal or external root resorption, are relatively frequent and require endodontic treatment, especially in more severe injuries. In many of these cases, referral to an endodontist is advisable.

When trauma has moved the tooth out of its normal position, it needs to be replaced gently as soon as possible. The only exceptions are cases of intrusion when it might not be possible or advisable to manipulate the tooth immediately. When an immature tooth is intruded up to 7 mm, it is recommended to wait three weeks and watch for signs of re-eruption. If no signs exist, one can initiate orthodontic repositioning. For intrusion of more than 7 mm, surgical or orthodontic repositioning should be performed within three weeks. In the case of an intruded tooth with a closed apex, there is a possibility of re-eruption if the tooth is slightly intruded (less than 3 mm) and the patient is younger than 17 years old. If the tooth is not moving after two to three weeks, however, orthodontic extraction or re-implantation is recommended. If a tooth with a closed apex is intruded more than 3 mm, orthodontic or surgical repositioning should be performed within three weeks. The risk with all intrusions is that the intruded tooth may ankylose in the infraposition. Once that begins, the tooth may not be movable except possibly surgically. It is well to advise the patient and the parents/guardians that the long-term prognosis of an intruded tooth is unpredictable, as it is likely to eventually be lost due to ankylosis.19-21

Splinting of a luxated tooth is recommended only for teeth that are still mobile after repositioning. In all types of trauma cases, a splint must allow for physiologic movement.22, 23 (See Figs. 4a–c & 5, and Table 3, regarding splinting time.)

Splinting Time for Various Types of Injuries

<table>
<thead>
<tr>
<th>Type of Injury</th>
<th>Splinting Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subluxation</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Extrusive luxation</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Avulsion</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Lateral luxation</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Intrusion</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Root fracture (middle 1/3)</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Alveolar fracture</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Root fracture (cervical 1/3)</td>
<td>4 months</td>
</tr>
</tbody>
</table>

Fig. 5: Once the tooth has been repositioned, the patient bites into a softened pink wax plate that had been previously rolled one or two times. This will ensure that the luxated (or avulsed) tooth stays in place while being splinted. In this case, a 16-pound fishing line was used as the splint on the luxated tooth.

Fig. 6:

- **Fig. 6a:** An immature tooth that was laterally luxated, as can be seen by the empty socket space around the apex on the radiograph.
- **Fig. 6b:** The tooth was repositioned and splinted for two weeks.
- **Fig. 6c:** At the six-month recall there is good evidence that the apex is maturing and the pulp responds normally to cold. At the three-year recall the pulp chamber is completely calcified; however, the tooth responds normally to EPT and there is no apical pathology.
Avulsion

The time outside of the socket for an avulsed tooth is the most critical of its survival. If the tooth is re-planted within 30 minutes, or alternatively kept in a physiological solution of specialized media or milk for a few hours, it has a fairly good prognosis. If the tooth has been dry for more than one hour, the periodontal ligament cannot be expected to survive and the tooth will likely become ankylosed (Fig. 7). Once reimplanted, most teeth need to be stabilized with a physiological splint for two weeks.

If the avulsed tooth has an open apex and was reimplanted within the hour, there is a possibility that the pulp will revascularize. In this case, delaying endodontic treatment at the emergency stage is recommended. Endodontic treatment should be performed later only if signs of pulpal necrosis, root resorption and/or arrested root development are confirmed.

In the case of a closed apex, revascularization is not expected. Therefore, endodontic treatment must be initiated two weeks after the tooth is reimplanted, and prior to removal of the splint. Treatment should not be initiated earlier because any further manipulation of the tooth prior to or immediately after reimplantation can cause further damage to the PDL. In addition, it has been shown that placing calcium hydroxide as an intracanal medicament immediately after reimplantation will promote inflammation that can lead to PDL damage. If the tooth had been kept dry longer than 60 minutes, performing root canal treatment prior to replantation is indicated.

After the emergency situation has been managed and the tooth/teeth stabilized, the second phase begins, in which the pulpal condition and likelihood of root resorption have to be carefully evaluated and the patient followed over a period of months, if not years. A follow-up timeline is essential to allow for intervention if signs of complications appear. In such cases, the expertise and training of endodontists become important. Diagnosing, preventing and treating any pulpal complications are an integral part of endodontic training as are performing pulp regenerative procedures and treating inflammatory root resorption (Figs. 8a & b).

Conclusion

Traumatic dental injuries present difficult challenges for both patients and their dentists. Current evidence allows the dental health care provider to manage situations that, in the past, often resulted in crippled dentition and unsightly appearance. Appropriate treatment can turn what at first glance looks like a hopeless situation into a very satisfactory outcome for patients. The endodontic specialist can play an important role in the team approach to treating patients with traumatic dental injuries.

Editorial note: Reprinted with permission from the American Association of Endodontists. ©2014. The AAE clinical newsletter is available at www.aae.org/colleagues.

A complete list of references is available from the publisher.

author

Dr Asgeir Sigurdsson, DDS, MS, was born and raised in Reykjavik, Iceland. He received a dental degree from University of Iceland, Faculty of Dentistry, in 1988. After one year in private practice in Iceland, he moved to Chapel Hill, NC. He graduated from University of North Carolina (UNC) at Chapel Hill in 1992 with a certificate in endodontics and a master of science with emphasis on neurobiology and pain perception. He was a full-time faculty member at UNC School of Dentistry from 1992 until 2004, first as an assistant professor and then associate professor with tenure beginning in 2000. He was appointed as the graduate program director of endodontics (specialty training) in 1997 and served in that position until 2004. From 2004 to 2012 he was in a private endodontic practice in Reykjavik, Iceland, and London, England. In September 2012 he became the chairman of the department of endodontics at New York University College of Dentistry. Additionally, he holds the following academic positions: From 2004 adjunct associate professor at UNC; honorary clinical teacher in endodontology, UCL Eastman Dental Institute, London, from 2006; and from 2011 honorary clinical associate professor in the Faculty of Dentistry, the University of Hong Kong. He has lectured extensively around the world on dental trauma, endodontics, pain diagnosis and forensic dentistry. He is active in many professional organizations and is past president of the International Association for Dental Traumatology (IADT). He received the Edward M. Osetek Educator Award from the American Association of Endodontists in 1998.